Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 45912
1.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
2.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но пря­мой l.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
3.  
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 210°. Най­ди­те гра­дус­ную меру мень­ше­го угла.

1) 150°
2) 15°
3) 30°
4) 10°
5) 105°
4.  
i

Ре­зуль­тат раз­ло­же­ния мно­го­чле­на x (4ab) + b − 4a на мно­жи­те­ли имеет вид:

1)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
4) x
5) x плюс 1
5.  
i

Точка С делит от­ре­зок АВ в от­но­ше­нии 5 : 3, счи­тая от точки А. Если длина от­рез­ка АВ равна 24, то длина от­рез­ка СВ равна:

1) 14,4
2) 9,6
3) 6
4) 9
5) 15
6.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен па­рал­ле­ло­грамм ABCD с вер­ши­на­ми в узлах сетки (см. рис.). Длина диа­го­на­ли AC па­рал­ле­ло­грам­ма равна:

1) 4
2) 5
3) 4 ко­рень из 2
4) 5 ко­рень из 2
5) 9 ко­рень из 2
7.  
i

Об­ра­зу­ю­щая ко­ну­са равна 26 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

1) 338 Пи
2) 338 ко­рень из 3 Пи
3) 169 Пи
4) 260 ко­рень из 3 Пи
5) 676 Пи
8.  
i

Среди дан­ных чисел ука­жи­те но­ме­ра чет­ных чисел, если из­вест­но, что число а  — не­чет­ное.

1) 8 · a;2) 11 · a3) a + 64) a25) a + 13
1) 2, 3
2) 4, 5
3) 1, 2
4) 3, 4
5) 1, 5
9.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та равно:

1) 2 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2
4) 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 12 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
10.  
i

Точки A(-3;3) и B(4;1)  — вер­ши­ны квад­ра­та ABCD. Пе­ри­метр квад­ра­та равен:

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та ;
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 53 конец ар­гу­мен­та ;
3) 18;
4) 15;
5) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 53 конец ар­гу­мен­та .
11.  
i

Най­ди­те про­из­ве­де­ние ко­ор­ди­нат точки пе­ре­се­че­ния пря­мых 6x минус y=4 и y минус 18=0.

1) 4
2) 18
3) 72
4) 78
5) 66
12.  
i

Ука­жи­те но­ме­ра функ­ций, ко­то­рые яв­ля­ют­ся чет­ны­ми.

1) y  =  0,2x2;2) y=8 в сте­пе­ни левая круг­лая скоб­ка \tfracx в сте­пе­ни 4 минус 16 пра­вая круг­лая скоб­ка 2|x|;3) y= минус дробь: чис­ли­тель: 3, зна­ме­на­тель: x конец дроби ; 4) y=x в квад­ра­те минус x плюс 2;5) y= синус 2x.
1) 1, 3
2) 1, 2
3) 4, 5
4) 3, 5
5) 2, 4
13.  
i

Со­кра­ти­те дробь  дробь: чис­ли­тель: x в квад­ра­те минус 9, зна­ме­на­тель: 8x в квад­ра­те минус 23x минус 3 конец дроби .

1)  дробь: чис­ли­тель: x минус 3, зна­ме­на­тель: 8x плюс 1 конец дроби
2)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: 8x минус 1 конец дроби
3)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: x плюс 1 конец дроби
4)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: 8x плюс 1 конец дроби
5)  дробь: чис­ли­тель: x минус 3, зна­ме­на­тель: 8x минус 1 конец дроби
14.  
i

Упро­сти­те вы­ра­же­ние

 левая круг­лая скоб­ка 5 плюс дробь: чис­ли­тель: a в квад­ра­те плюс 25c в квад­ра­те минус b в квад­ра­те , зна­ме­на­тель: 2ac конец дроби пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка a плюс b плюс 5c пра­вая круг­лая скоб­ка умно­жить на 2ac

1) a плюс 5c минус b
2) 4a в квад­ра­те c в квад­ра­те
3) 5
4) a плюс 5c плюс b
5) a минус 5c минус b
15.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен ту­по­уголь­ный тре­уголь­ник ABC с вер­ши­на­ми в узлах сетки (см. рис.). Ко­си­нус угла ABC этого тре­уголь­ни­ка равен:

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
3)  минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
4)  минус дробь: чис­ли­тель: 12, зна­ме­на­тель: 13 конец дроби
5)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 13 конец дроби
16.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
5) 28
17.  
i

Если  дробь: чис­ли­тель: 5x, зна­ме­на­тель: y конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , то зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 3y плюс 9x, зна­ме­на­тель: 13x минус y конец дроби равно:

1) 12
2) 13
3)  дробь: чис­ли­тель: 11, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 93, зна­ме­на­тель: 129 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 13 конец дроби
18.  
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,6 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 9 минус 4x, зна­ме­на­тель: 3x минус 11 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 9 минус 4x пра­вая круг­лая скоб­ка \times левая круг­лая скоб­ка 3x минус 11 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:

1)  левая квад­рат­ная скоб­ка 0;1 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 1;2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 2;3 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка 3;4 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1;0 пра­вая круг­лая скоб­ка
19.  
i

На кру­го­вой диа­грам­ме пред­став­ле­на ин­фор­ма­ция о про­да­же 200 кг ово­щей в те­че­ние дня. Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло пред­ло­же­ния

А)  Масса (в ки­ло­грам­мах) про­дан­ной ка­пу­сты равна ...

Б)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­но­го кар­то­фе­ля мень­ше массы про­дан­ных по­ми­до­ров, равно ...

В)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­ной свек­лы боль­ше массы про­дан­но­го лука, равно ...

Окон­ча­ние пред­ло­же­ния

1)   25

2)  40

3)  4

4)  125

5)  38

6)  19

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния Окон­ча­ние пред­ло­же­ния

А)  Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби равно ...

Б)  Зна­че­ние вы­ра­же­ния 10 ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби равно ...

В)  Зна­че­ние вы­ра­же­ния 8 синус в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус 4 равно ...

1)  4 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

2)  4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

3)   минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

4)  2,5

5)  4 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

6)  5

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

21.  
i

Вы­бе­ри­те три вер­ных утвер­жде­ния, если из­вест­но, что две пер­пен­ди­ку­ляр­ные плос­ко­сти  альфа и  бета пе­ре­се­ка­ют­ся по пря­мой a и точка A при­над­ле­жит плос­ко­сти  бета (см. рис.).

1.  Любая пря­мая, про­хо­дя­щая через точку A и пе­ре­се­ка­ю­щая плос­кость  альфа , пе­ре­се­ка­ет пря­мую a.

2.  Су­ще­ству­ет един­ствен­ная пря­мая, про­хо­дя­щая через точку A и пер­пен­ди­ку­ляр­ная плос­ко­сти  альфа .

3.  Пря­мая, про­хо­дя­щая через точку A и пер­пен­ди­ку­ляр­ная плос­ко­сти  бета , пер­пен­ди­ку­ляр­на плос­ко­сти  альфа .

4.  Любая точка пря­мой a лежит в плос­ко­стях  альфа и  бета .

5.  Любая пря­мая, ле­жа­щая в плос­ко­сти  альфа и пер­пен­ди­ку­ляр­ная пря­мой a, пер­пен­ди­ку­ляр­на плос­ко­сти  бета .

6.  Любая пря­мая, пер­пен­ди­ку­ляр­ная пря­мой a, при­над­ле­жит плос­ко­сти  бета .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

22.  
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3x в квад­ра­те плюс x плюс 2 конец ар­гу­мен­та =3x минус 2.

23.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из 5 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 36 ко­рень из 6 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 5 плюс ко­рень из 6 пра­вая круг­лая скоб­ка минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та .

24.  
i

Точки N и М лежат на сто­ро­нах АВ и AD па­рал­ле­ло­грам­ма ABCD так, что AN : NB  =  1 : 2, AM : MD  =  1 : 2. Пло­щадь тре­уголь­ни­ка CMN равна 45. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма ABCD.

25.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 18 пра­вая круг­лая скоб­ка x, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 25 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 11 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та пра­вая круг­лая скоб­ка конец дроби \geqslant0.

Если x_1 и x_2  — корни урав­не­ния 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =48 плюс 6 в сте­пе­ни x минус 8 умно­жить на 3 в сте­пе­ни x , то зна­че­ние 3 в сте­пе­ни левая круг­лая скоб­ка x_1 плюс x_2 пра­вая круг­лая скоб­ка равно ... .

28.  
i

В пря­мо­уголь­ни­ке ABCD вы­бра­ны точки L на сто­ро­не BC и M на сто­ро­не AD так, что ALCM  — ромб. Най­ди­те пло­щадь этого ромба, если AB  =  3, BC  =  9.

29.  
i

По пря­мым па­рал­лель­ным путям рав­но­мер­но в про­ти­во­по­лож­ных на­прав­ле­ни­ях дви­жут­ся два по­ез­да: по пер­во­му пути  — ско­рый поезд со ско­ро­стью 108 км/ч, по вто­ро­му  — пас­са­жир­ский со ско­ро­стью 68,4 км/ч. По одну сто­ро­ну от путей на рас­сто­я­нии 100 м от пер­во­го пути и 20 м от вто­ро­го рас­тет де­ре­во. Если пре­не­бречь ши­ри­ной пути, то в те­че­ние сколь­ких се­кунд t пас­са­жир­ский поезд, име­ю­щий длину 165 м, будет за­го­ра­жи­вать де­ре­во от пас­са­жи­ра ско­ро­го по­ез­да? В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 15t.

Объем пра­виль­ной тре­уголь­ной пи­ра­ми­ды SABC равен 13. Через сто­ро­ну ос­но­ва­ния ВС про­ве­де­но се­че­ние, де­ля­щее по­по­лам дву­гран­ный угол SBCA и пе­ре­се­ка­ю­щее бо­ко­вое ребро SA в точке М. Объем пи­ра­ми­ды МАВС равен 6. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 8, зна­ме­на­тель: ко­си­нус альфа конец дроби , где  альфа   — угол между плос­ко­стью ос­но­ва­ния и плос­ко­стью бо­ко­вой грани пи­ра­ми­ды SABC.

31.  
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 14 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?

32.  
i

Рав­но­бед­рен­ная тра­пе­ция с ос­но­ва­ни­я­ми дли­ной 7 и 3 и ост­рым углом 60° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ее бо­ко­вую сто­ро­ну. Най­ди­те объем тела вра­ще­ния V и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .